"302E4/2019年10月1日(二)" 修訂間的差異
出自 青少年追求卓越
< 302E4
Limingyu2007 (對話 | 貢獻) 小 (→探索精選問題或遊戲) |
(→數學與程式實驗) |
||
(未顯示由 2 位使用者於中間所作的 14 次修訂) | |||
行 5: | 行 5: | ||
* 解同學提出的一個數學問題。九宮格填入 -4~4,9個數字。 | * 解同學提出的一個數學問題。九宮格填入 -4~4,9個數字。 | ||
* 三角形的內心(2)- 基礎知識 | * 三角形的內心(2)- 基礎知識 | ||
− | *# | + | *# 作圖:點到直線的距離。觀察出圓的切線。 |
− | *# | + | *# 作圖:半圓的圓周角為 90 °。 |
+ | |||
+ | |||
__TOC__ | __TOC__ | ||
行 35: | 行 37: | ||
*** 檔案名稱:【三角形的外心】 | *** 檔案名稱:【三角形的外心】 | ||
*** 檔案名稱:【三角形的垂心】 | *** 檔案名稱:【三角形的垂心】 | ||
+ | ** 檔案名稱:【全等三角形】 | ||
+ | *** SSS | ||
+ | |||
+ | ==參考文字== | ||
+ | * 直線 \overleftrightarrow{BC} 與線外一點 A。 | ||
+ | * A 點與直線 \overleftrightarrow{BC} 上任一點 D 的線段 \overline{AD} 之長度,隨 D 點之位置而改變。 | ||
+ | * 當 \overline{AD} 垂直 \overleftrightarrow{BC} 時,其長度最短。 | ||
+ | * 上圖中之線段 \overline{AE} 代表最短的線段 \overline{AD} 。 | ||
+ | * 以 A 點為圓心,線段 \overline{AE} 為半徑,畫一圓 c。 | ||
+ | * 直線 \overleftrightarrow{BC} 與 圓 c 相交於唯一的點 E。稱此直線 \overleftrightarrow{BC} 為圓 c 的一條切線。 | ||
+ | * 從圓外的一點,對圓做切線,有兩條。 | ||
+ | * 三角形的三個頂點在一個圓上,且其中一邊為圓的直徑時,直徑的對角必為直角。 | ||
+ | |||
==翻轉學習:均一與KhanAcademy== | ==翻轉學習:均一與KhanAcademy== | ||
* 併數學與程式實驗 | * 併數學與程式實驗 | ||
==實施紀要== | ==實施紀要== | ||
− | * 部落格標題:【三角形的內心(2)】 | + | * 貼上 6 個說明文字標籤。 |
+ | * 實驗:圓周的任意點可以畫出其切線。 | ||
+ | * 圓的切線用 Geogebra 的切線做圖。 | ||
+ | * 圓的切線用尺規做圖。 | ||
+ | * 觀察三角形內心的特性。 | ||
+ | * 全等三角形作圖:SSS | ||
+ | * 部落格標題:【三角形的內心(2)、(3)】 |
於 2019年10月1日 (二) 11:56 的最新修訂
- 請學生提出課業問題。如果有的話,請 Po 在個人的學習部落格上,以及心克剛共學網臉書社團。
- 進行 《 GeoGebra 數學實驗室:三角形的各心,及其特性》
上次實施紀要
- 解同學提出的一個數學問題。九宮格填入 -4~4,9個數字。
- 三角形的內心(2)- 基礎知識
- 作圖:點到直線的距離。觀察出圓的切線。
- 作圖:半圓的圓周角為 90 °。
探索精選問題或遊戲
- 併數學與程式實驗
數學與程式實驗
- 本學習活動名稱:《GeoGebra 數學實驗室:空間中的線與平面》。
- 本學習活動的簡述:
- 題目來源:參考歷屆國中會考及高中學測題有關空間中的線與平面考題
- 目的:在幫助學生以世界級優質的應用軟體 GeoGebra,實驗觀察空間中的線與平面,作為拓展運用科技學習之一實例;以提高學生學習數學的興趣,並用互動式的電腦動畫圖像加強數學概念之理解力,和學習善用圖象記憶的方法。
- 本階段的目標是:。
- 主要的方法:1) 問題導向,展示成品,2) 拆解問題,說明每一個幾何物件的組成元素,3) 教練示範建構半成品,4) 學生練習,5) 快的學生協助慢的學生,促成教學相長的效果。
- 教練在本學習活動中只以專案會用到的功能和指令作展示,而不企圖介紹 GeoGebra 的所有的功能和指令。
- 重要連結:GeoGebra 官網入口。
- 今日的目標是:1)瞭解圓的切線的意義,從點與直線的距離開始,2)圓的切線用尺規做圖,3)三角內心到三角形的三邊等距的實驗與證明。
- 製作三角形的各心,及觀察其特性,發現其原理。
- 重心
- 內心
- 外心
- 垂心
- 銳角三角形、直角三角形、鈍角三角形
- 檔案名稱:【長方體中的兩面角】
- 檔案名稱:【三角形的重心】
- 檔案名稱:【三角形的內心】
- 檔案名稱:【三角形的外心】
- 檔案名稱:【三角形的垂心】
- 檔案名稱:【全等三角形】
- SSS
- 製作三角形的各心,及觀察其特性,發現其原理。
參考文字
- 直線 \overleftrightarrow{BC} 與線外一點 A。
- A 點與直線 \overleftrightarrow{BC} 上任一點 D 的線段 \overline{AD} 之長度,隨 D 點之位置而改變。
- 當 \overline{AD} 垂直 \overleftrightarrow{BC} 時,其長度最短。
- 上圖中之線段 \overline{AE} 代表最短的線段 \overline{AD} 。
- 以 A 點為圓心,線段 \overline{AE} 為半徑,畫一圓 c。
- 直線 \overleftrightarrow{BC} 與 圓 c 相交於唯一的點 E。稱此直線 \overleftrightarrow{BC} 為圓 c 的一條切線。
- 從圓外的一點,對圓做切線,有兩條。
- 三角形的三個頂點在一個圓上,且其中一邊為圓的直徑時,直徑的對角必為直角。
翻轉學習:均一與KhanAcademy
- 併數學與程式實驗
實施紀要
- 貼上 6 個說明文字標籤。
- 實驗:圓周的任意點可以畫出其切線。
- 圓的切線用 Geogebra 的切線做圖。
- 圓的切線用尺規做圖。
- 觀察三角形內心的特性。
- 全等三角形作圖:SSS
- 部落格標題:【三角形的內心(2)、(3)】